Transport Properties of the Quark Gluon Plasma

Derek Teaney
SUNY Stonybrook and RBRC Fellow

QCD is HOT: Lattice (RBRC-Bielefeld)

1. The critical energy density and temperature are

$$e_c \simeq 1\,{\rm GeV/fm}^3$$
 $T_c \simeq 160\,{\rm MeV}$

2. What are its properties? Shear viscosity?

Need reach an energy density of e_c over a $\ \textit{Large} \ \ \textit{volume}$ for $\ \textit{Long} \ \ \ \textit{enough}.$

Observation:

There is a large momentum anisotropy:

$$v_2 \equiv \frac{\left\langle p_x^2 - p_y^2 \right\rangle}{\left\langle p_x^2 + p_y^2 \right\rangle} \approx 20\%$$

Interpretation

ullet The medium responds as a fluid to differences in X and Y pressure gradients

Data on Elliptic Flow:

$$\frac{1}{p_T} \frac{dN}{dp_T d\phi} = \frac{1}{p_T} \frac{dN}{dp_T} (1 + 2v_2(p_T)\cos(2\phi) +)$$

$$X:Y = (1 + \underbrace{2v_2}_{\sim 0.4} : 1 - \underbrace{2v_2}_{\sim 0.4})$$

Elliptic flow is large X:Y $\sim 2.0:1$

Energy Loss of Fast Partons – Cartoon

Power law initial spectrum:

$$\frac{dN}{dp_T} \propto \left(\frac{1}{p_T}\right)^{10}$$

Exponential equilib. spectrum:

$$\frac{dN}{dp_T} \propto e^{-\frac{p_T}{T}}$$

The initial spectrum will lose energy and approach the equilibrium spectrum

Tells something about density and interaction rates

Data on π^0 p_T spectrum

$$R_{AA}\equivrac{\left(rac{dN}{p_Tdp_T}
ight)_{ ext{In AuAu}}}{N_{ ext{coll}}\left(rac{dN}{p_Tdp_T}
ight)_{ ext{In pp}}}$$

Heavy Quarks

The heavy quarks will either relax to the thermal spectrum and show the same v_2 as all thermal particles or not depending on the Drag/Diffusion coefficients and p_T .

Data Recapitulation

- 1. Elliptic Flow Soft event is strongly modified
- 2. Heavy Quarks Suppressed and flowing
- 3. Energy loss significant

Hydrodynamics:

• For hydrodynamics need:

$$\frac{\ell_{\rm mfp}}{R_{\rm Au}} \ll 1$$

ullet How to define $\ell_{
m mfp}$?

$$\ell_{\rm mfp} \sim \frac{\eta}{e+p} \qquad e+p = sT$$

Condition:

$$\underbrace{\frac{\eta}{s}}_{\text{Medium Property}} \sim 1/\alpha_s^2$$

$$\times$$
 $\frac{1}{RT}$ $\ll 1$

Experimental Property $\sim 1/2$

Viscous Hydrodynamics Equations

$$T^{\mu\nu} = eu^{\mu}u^{\nu} + pg^{\mu\nu} + \pi^{\mu\nu}$$

First order navier stokes theory

$$\pi = \pi_{(1)}^{\mu\nu} \equiv -\eta \left(\nabla^{\mu} u^{\nu} + \nabla^{\nu} u^{\mu} - \frac{2}{3} \Delta^{\mu\nu} \nabla \cdot u \right)$$

Second order

$$\pi^{\mu\nu} = \overbrace{\pi^{\mu\nu}_{(1)}}^{O(\epsilon)} + \overbrace{\text{second derivatives}}^{O(\epsilon^2)}$$

• For example:

$$\pi^{\mu
u} = \pi^{\mu
u}_{(1)} - au_{\pi} D_{t} \pi^{\langle \mu
u
angle} + ext{Other 2nd derivs}$$

The best calculation so far: (Romatschke& Romatschke)

The elliptic flow can not be described unless $\frac{\eta}{s} < 0.4$

Independent of second derivative terms (DT and K. Dusling)

Gradient expansion is working. Temperature is a good concept.

Worse at larger viscosities and larger p_T

What does $\eta/s < 0.4$ mean theoretically?

Perturbation theory:

(Baym and Pethick. Arnold, Moore, Yaffe)

Kinetic theory of quarks and gluons + soft gauge fields + collinear emission

$$\frac{\eta}{s} \simeq 0.3 \left(\frac{0.5}{\alpha_s}\right)^2$$

• $\mathcal{N}=4$ Super Yang Mills at strong coupling

(Kovtun, Son, Starinets, Policastro)

No quasi-particles.

$$\frac{\eta}{s} = \frac{1}{4\pi} \quad \Longrightarrow \quad \text{Conjectured Lower Bound}$$

The experimental results are within a factor of a few of the KSS bound

Estimate of transport times with Heavy Quarks

Put a heavy quark in this medium

- The charm quark undergoes a random walk suffering many collisions
- The relaxation time of the heavy quark is:

$$au_R^{
m charm} \sim rac{M}{T} au_R^{
m light}$$

If you think you know the relaxation time you should be able to compute the charm spectrum.

Langevin description of heavy quark thermalization:

Write down an equation of motion for the heavy quarks.

$$\begin{array}{ccc} \frac{dx}{dt} & = & \frac{p}{M} \\ \frac{dp}{dt} & = & -\underbrace{\eta_{D}p} + & \underbrace{\xi(t)} \\ & & \text{Drag} & \text{Random Force} \end{array}$$

The drag and the random force are related

$$\langle \xi_i(t)\xi_j(t')\rangle = \frac{\kappa}{3}\delta_{ij}\,\delta(t-t')$$
 $\eta_D = \frac{\kappa}{2MT}$

 $\kappa =$ Mean Squared Momentum Transfer per Time

• Einstein related the diffusion coefficient to the mean squared momentum transfer

$$D = 2T^2/\kappa$$

All parameters are related to the heavy quark diffusion coefficient or κ

Application to Heavy Ion Collisions

- Generalize to mildly Relativistic quarks.
 - Assumes weak coupling.
 - Neglect radiative energy loss. The quark is not ultra-relativistic

$$\gamma v \lesssim \frac{1}{\alpha_s} \frac{m_{\rm D}}{T} \sim 6$$

Assumes a definite form for fluctuations

Modeling

- Input spectrum of charm and bottom quarks from Cacciari e.t. al
- Hadronize according to measured fragmentation functions
- Electrons from charm and bottom semileptonic decays measured
- Can not separated the charm and bottom contributions

Summary

- 1. Suppression and Elliptic Flow are intimately related.
- 2. From the suppression pattern, we estimate that

$$D \lesssim \frac{12}{2\pi T}$$

Hard to reproduce the elliptic flow and suppression at the same time.

Computing heavy quark diffusion coefficient

- Compute at weak coupling → Kinetic Theory
- Lattice → Hard
- Compute at strong coupling → Model theories AdS/CFT

Extrapolate to reality.

Giving the diffusion coefficient a rigorous definition

Heavy Quarks are Quasi Classical

$$\lambda_{
m de}$$
 Broglie $\sim rac{\hbar}{\sqrt{MT}} \ll rac{\hbar}{T}$

Compare the Langevin process to the microscopic theory

Langevin

Microscopic Theory

$$\frac{dp}{dt} = -\eta_D p + \xi(t) \qquad \qquad \frac{dp}{dt} = \mathcal{F}(t, \mathbf{x}) = qE(t, \mathbf{x})$$

Match the Langevin to the Microscopic Theory

Langevin

Microscopic Theory

$$\kappa = \int dt \langle \xi(t) \, \xi(0) \rangle \qquad \kappa = \int dt \, \langle \mathcal{F}(t, \mathbf{x}) \mathcal{F}(0, \mathbf{x}) \rangle_{HQ}$$

Diffusion Coefficient ← Electric Field Correlator

Computing κ – Kinetic Theory vs. Correlators

 \bullet κ is the mean squared momentum transfer per unit time:

• κ is an Chromo-electric field correlator (+ Wilson Lines):

Beyond leading order (Guy D. Moore and Simon-Caron Huot)

(only transport coefficient known at NLO)

1. Perturbation theory in:

$$g_s \sim \frac{m_D}{T}$$
 NOT $\alpha_s = \frac{g_s^2}{4\pi}$

2. Schematically:

$$\kappa = (g^4 T^3) \Big[\underbrace{C_0 \log \left(\frac{T}{m_D}\right) + C_1 + C_2 \frac{m_D}{T}}_{\text{leading order}} \Big]$$
 diffusion rate

(Guy D. Moore and Simon Carot-Huot)

Perturbation theory fails for kinetics even for $T=M_Z$. More Resummation?

$$\kappa = \sqrt{\lambda}\pi T^3 \qquad \lambda = g^2 N$$

Summary

Perturbative QCD Estimates

$$D \approx \frac{2 \leftrightarrow 6}{2\pi T}$$

 Best guess for QCD from strong coupling

$$D \approx \frac{4.0 \leftrightarrow 8.0}{2\pi T}$$

Conclusions

- 1. Three important data:
 - Elliptic Flow the soft event.
 - Suppression of high p_T particles.
 - Flow of heavy quarks
- 2. Data on flow and heavy quarks difficult to reconcile with kinetic theory
 - Quark and gluon quasi-particles not a good concept?
- 3. LHC: Much to learn about parton showers etc from this group
 - Next talk